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Abstract:
Theoreticad Methods for the Determination of Mixing

Accderation driven fluid mixing is gudied here from a theoretical point of view.
Consderable progress has been achieved in the understanding of mix. Theories of
the authors are reviewed which dlow prediction of the edge of the mixing zone,

in agreement with experimental data. Theories which describe the didtribution of
measses within the mixing region are dso reviewed. The theory we present
describes a chunk mix regime, in which two phases are mixed & a chunk leve,

but for which there is no aomic mixing. Thus the two phases are segregated into
digoint regions of space.

Keywords mixing, multiphase flow, Rayleigh- Taylor indability



1 Introduction

Characterization of mixing rates for acceleration driven flows isimportant for the
design of inertid confinement (ICF) targets and the study of astrophysica flows
moading supernovae and geophysicd flowsinvolving thermd inverson or
dendty inverson (eg. asdt dome) layers. Underprediction of mixing rates from
many sSmulation codes reative to experiments and observationd data adds to the
importance of atheoretica investigation. Remarkably, the theoreticaly predicted
mixing rates have been in agreement with experiment for some time. In this paper
we summarize our main results for the theoretical determination of mixing rates,
with an emphasis on recent improvements which add congderably to the power
and applicability of these methods. We use these mixing rates to parameterize a
subgrid mixing modd, aso presented here. Detailed andytic solutionsto this
mode have been known for some time. We present the weekly compressible
asymptatic expangon (the incompressible limit). We comment on the relation of
our results to the direct Smulation determination of mixing rates

The outline of our gpproach can be summarized as:

1 Bubble merger moddsto predict bubble growth rate;

2 Characterization of the Center of Mass (COM) mation to link bubble sde mix
predictions to soike Sde mix predictions,

3 Determination of drag as afunction of Atwood number, so thet arbitrary
acceerations can be studied;

4. Andytic determination d leading and below leading order large time

asymptotics for the edge motion equations;

Mix modd (subgrid modd) equetions;

6. Determination of an effective diffuson and Reynolds Sressterm for usein
reduced modes.

[¢)]

2 Bubble merger modds

Bubble merger models predict the penetration rate of fingers of light fluid
(bubbles) into the heavy fluid. For accderaion driven mixing, it is observed that
the bubbles increase in 9ze, through a process of bubble competition and merger.
In this process, advanced bubbles are accd erated rlative to the mean bubble
moation, while retarded ones are held back. Thus the smdler bubbles (dso
generdly the retarded ones) become removed from the interface of advancing
bubbles, while the larger, advanced ones expand to fill the resulting space. In
1960, Sharp and Wheder proposed amodd to describe this process. The modd
was corrected by Glimm and Sharp (1990, 1997) to include the hydrodynamica
accdlerations (pogtive and negative) given to advanced and retarded bubbles due
to their positions relative to the mean bubble penetration height. Such modes
were extended to three dimensions by Oron et d. (2001) and independently by
Cheng et d. (20024), with improved predictions The 3D modds predict not only
the growth rates for the bubble interface (both agree with experiment; Cheng et 4.
isdightly higher); they dso predict the bubble height to widthratio. For this
quantity, the two modds are digtinctly different in their predictions, see Table 1.
Agreement of the Cheng et d. mode with experimentd datais very satisfactory.



[Table 1 goes here]
The bubble dynamic equaions are formulated in scded variables, from which the
Agt? dynamic growth has been removed. This being the case, the saif simiilar, late
time solution appears as afixed point. In fact, it is arenormdization group (RNG)
fixed point.

For steedy acceleration, i.e. Rayleigh-Taylor (RT) mixing, the bubble penetration
height h, satisfiesthe scding law h, =a, Agt®. Four directly messurable
quantities determine the growth rate congtant a , inthis formula. The
measurements, the rdaion of these quantitiesto a, and the experimenta
vdidation of thisrelation are contained in Cheng et d. (20023). Welist the four
quartities (1) Let t¢ bethetimeto merger for apair of interacting bubbles. Then

w = <1/ t¢ > is the mean inverse time to merger, and thus the mean merger rate. It

isevauated a the fixed point. (2) h¢ isthe maximum height separation, i.e. the
height for ingantaneous merger, (3) G, isthe soeed of asingle bubbleina
periodic aray, and (4) K isageometrica factor giving the increase in radius for a
sngle merger event, dightly less than %2Each of the proceeding is expressed in
scaled units. Then the fixed point formulafor a ) is:

+

2, =2 (G, + = hgww (21)
As written, the equation has been verified by direct comparison to experimental
data, Cheng et d. (20024). To obtain a dosed expresson for a,, the above
quantities are evaluated directly within a statistical model for the bubble dynamics.
Two quantities define this mode: the bubble velocity and the bubble merger
criteria. The bubble velocity is defined as the sum of asingle (periodic array)
bubble velocity and a bubble interaction term, the * envelope velocity” . The
bubble velocity asasum of these two terms has been tested against Smulation
data. The criteriafor bubble merger is defined to be the time a which the retarded
bubble sarts to nove backwards, usng this two term formula for the bubble

velocity. Note that the bubble interaction term can have @ther Sgn, so that azero
totd velocity is possble The bubble merger criteriawas shown to be an

insengtive parameter in the modd.

From thesetwo inputs, w and h¢ are determined. The result is the determination

a, » 0.5- 0.6, in agreement with experimentd results. The same formulas yield

the bubble height to width retio, cited in Table 1. Since (2.1) depends on two
parameters, it isimportant to check it (as we do) on two independent sets of data

Soedificdly, W isvery sendtive to the bubble width while a,, can mask cancding
errors betweenw andh$.

3 Compressble mixing zone dynamics



The bubble merger modd is reedily extended to compressible flow. The angle
bubble vlodty, G, in scded variables, must be determined for compressible flow.
This quantity affects the envelope velocity and thus the total bubble velocity. The
remainder of the andysisisunchanged. See Chen et d. (1993). Thissame
reference shows that a,, increases with incressing values of the dimensionless

compressibility | g/c?. It wasaso shown that the bubble merger mode

predictionsfor a,,, as corrected in this manner for compressibility, were in good
to moderate agreement with Smulation results

4 Center of mass motion

For steady acceleration (Rayleigh-Taylor ) incompressible mixing, the center of
mass Z, of the mixing zone sdisfiesZ.,, =a oy AGt?, in accordance with the
sdf smilar scding of theflow. Z,, » O for Atwood numbers A < 0.8. For
generd vauesof A, thescding law a g, = const. A fitsthe data. Here the
condant is determined by the knownvalue a, =1/2 for A=1(freefdl) and an
assumed vduefor a,, while g » 10isinsengtiveto the data Thus Z,,, ad

Aoy Very dficiently congrain the sdf amilar flow. The COM rdation
introduces a new eguation which establishes alink between the bubble and spike
mixing growth rates. Given avauefor a ., , we have determined thet the ratio

a /a,isasolution of aquadratic equation. Thus spike data can be predicted from
aknowledge of bubble data. See Glimm & d. (1999) and Cheng et d. (1999 and
2000). SeeHg. 1.

[Figure 1 goes here]

5 Buoyancy drag equaions
A number of authors have considered buoyancy drag equations to describe the

dynamics of the edge of the mixing zone. These equations are fundamenta for al
models of mix, as the data they supply is of such basic importance. Our verson of
these equations has fewer parameters and greater predictive power than Smilar
equations introduced by others. See Cheng et d. (2000). In addition, we have a
finite drag coefficient in the limit A =1, asisrequired on intuitive grounds. The
equations have the form

CrV?

avi_ . . oy
(ri+krid—== - 190~ 1) Z]

Note that the dengity r inthedrag termin (5.1) isthe dendty of thefluid being
digolaced. Thisform of drag is teken by dasscd text books in fluid dynamics, but
has been incorrectly replaced by 1, , the density of the displacing fluid, by a
number of workers, leading to a divergent drag coefficient in thelimit A® 1.

(5.)



Here k; =1 isan added mass coefficient, Z; isthe penetration distance of the
mixing zoneon sde i =1 (bubble) and i = 2 (spike), V. isthe edge velocity and
C isthedrag coefficient. Also g(t) isthe accderation.

Thereis only one undetermined parameter in (5.1), namdy C, (as C, is
determined from C; by the COM theory). C. itsdf isdetermined from our bubble
merger modd, or Smulaions, or from experiment. Subdtituting the h =a, Agt?
late time asymptotic solution for RT mixing, we can determine @; uniqudy in
termsof C, and conversdly. Thus the equation is completely determined by the

RT data, and in view of Sec. 4, it isuniquely determined in terms of the RT
bubble data done (with exceptions noted above for large A).

Thus (5.1) can be used to predict Richtmyer-Meshkov (RM) mixing rete
exponents g, . The late time RM asymptotics are predicted for the firgt time from
the a; and usudly from a,, aone We obtain a zero parameter agreement with
experiment andwithknown A=1 spike limits. See Cheng et d. (2000).

SeeFg. 2.

[Figure 2 goes here]

For g(t) = g acondant (seady RT mixing), the large time asymptotic solution of
the buoyancy drag equation (5.1) is | Z, [Fa, Agt®. The equation cannot be
integrated in dlosed form for generd t, but a dosed form gpproximate evauetion
of the next two lower orders (the term proportiond to t and the constant term)
was obtained. The result exhibited an explicit dependence of these lower order
terms on the initid conditions, in contragt to the leading order asymptotics, which
isindependent of initid conditions The result is

I Zi (t) |:aiAg(t - to)2 + bi\/ai Ag |Zi0 I(t - to) +gi IZiO |, (5-2)
whereZ,, isaninitid amplitude, and V,, isaninitid veocity. We dso define
a =1/(2fa;) and T, =(1- & [V';,)/(1+a |V';,]) asatransform of the scaled
initid velodity V|, =V, //Ag | Z, |. Then with

d = 2(1+ fio) - &, (1+3in)
I (1+ fio)(l' ai)

acomputation srowsthat b, = 2d, andg, =d?. Note the explicit dependence on
initid conditionsin the lower than leading order terms.

(53)

Thisandyss dlows an improved fit and interpretation of experimenta data. For
example the data of Smeeton and Y oungs and of Read can be religbly



distinguished from the leading order asymptatics and the dependence of this deta
on Z(t =0 or V(t=0) canbeobserved. See Fg. 3.

[Figure 3 goes here]

Speculations concerning the cause of discrepancy between smulation and
experiment have focused on three possible explanations: (a) numerica diffuson
in the untracked smuletions, (b) preasymptotic behavior in the smulaions, and
() noise in the experiments of a specific spectral power that generates t*
modification to the t* experimenta data. Issue (a) isin fact asufficient
explanation, see George e d. (2002). It is possible that (b) may be a contributing
explanation. To explore this possihility, the preasymptotic solutions (5.2) of (5.1)
will be hdpful. Issue (¢) isdiscussed in Glimm et d. (2001).

6 Mix modd equations

Two phase flow equations gppropriate to a chunk mix regime have been proposed
and sudied in detail, see Glimm et d (1998 and 1999) and rdaed papers. The
modd has saverd attractive features: it is mathematicaly geble i.e totdly
hyperbolic with real characterigtics for time propagation. The equetions are
thermodynamicdly determinate, usng equetion of Sate modesfor each
condituent in an unmixed mode. Commonly used mix moddsfail one ar both of
these properties. In fact athermodynamically determinate set of equationsis often
achieved by assumption of molecular mix, leading to models which possessa
sngletemperature.

The chunk mix equations have been andyzed in great detail, with dosed form
solutions obtained for the incompressible limit, Glimm et d (1998 and 1999).
Perturbation terms in the weskly compressible limit have been computed in
closed form through second order in the Mach number, Jn (2001) and Glimm &
Jn (2001). This isthe order for which the incompressible pressure first gppears.
Reaultsfor the volume fraction in thislimit are displayed in FHg. 4.

[Figure 4 goes here]

Here we discuss new insght regarding closure which has emerged from a study of
the weskly compressible theory. The equations resemble the Euler equations for
each fluid consdered separately. They are coupled through three interface terms.

Two of theseare aterm p b, /912 added to the momentum equation for species
kandaterm (pv) Tb, / 1z isadded to the energy equation, also for species K .

Here b, isthe volume fraction of species k. We usethenotation X~ to denote
thequantity X averaged over theinterface, and X, to denote avolume average

of X over the phase volume occupied by species k . Closure assumptions, such as
neglect of Reynolds stress terms within asingle species phase average, and an
assumed identity of volume and mass weighted averages within a single phese



average are discussed in Glimm et d. (1998) and earlier papers. The third
interface term occursin the (new) interface equation

M 4y o _g. 61)
fit fiz

The important closure relations are those for the interface quantities p° and (pv)’
and v . Thedosurefor (pv)" ishighly condrained intermsof the v and p’
closures. These two are aso congirained to be convex combinations of the
corresponding phase quantities, v, and p,, with convex coefficients nj,, X =v, p.
We make the hypotheses (appropriate for achunk mix regime) that there are no
internd length scaes within the mixing layer, so that the m's must be functions
of dimensonless variables, such as b, . Taking the functiona dependence to be
fractiond linear in b, , dl but one of the four parametersin the fractiond linear
dependence is determined in an obvious manner by the boundary condiitions at
z=/Z,,theedges of the mixing zone. In thisway the dosureis mainly driven by
directly observable data, a feature which the authors regard as highly desirable. In
fact the edges Z, are determined by the buoyancy equation (5.1). The closure

rdaionfor p* issetintermsof theratio of densties Glimm et d. (1998) and
Glimm & Jn (2001). We now discussthe V' closure rdation, i.e. the equation for
the fractiond linear definition of Nt in
Vo= my, + iy, . (62

After inserting obvious mixing zone boundary condraints, and our assumed form
n{, we have
bk
=—— kK x=vy,p. 6.3
M b, P ©9
G wasinterpreted as aratio of the volumetric growth rates for the mixing zone
for thetwo phases, ¢, =|V,./V, |, in theincompressble casg, Glimm et d. (1998

and 1999). Here V, = 1Z, / it. Asis observed below, both the convex sum
property (6.2) and thefractiond linear form (6.3) for the convex coefficients can
be derived from the primitive equations, and are thus independent of closure

assumptions. Closure thusis a specification of ¢, .

The volumetric mixing rate constraint determining the V' dlosure has been
extended to the fully compressble case Glimm & Jn (2001). Because of
compressibility, new terms enter into the phase volume growth rates, induding

the compressibility of the two phases. In dimensonless terms, this influence
enters as aratio of the sound speeds for the two fluids in the weskly compressible
limit. We gtart with an exact identity for ¢, , vaid for the fully compressibletwo

fluid equations, derived in the absence of any dosure assumptions a al. Note that



the interface equation, the convex sum property for V' and the fractiond linear
form for n} aredl derived in this equation independently of closure assumptions.
We have
ﬂvm + i Dker k¢
o = 1z r Dt
© W, 1DT,
z r, Dt
istheratio of logarithmic rates of volume creation for the two species,
whereD, / Dt = {1/t +v, 1/ 1t isthe convective derivative defined by the velocity
V, . Then the closure (absence of internd length scales) can be interpreted as an
eguation forc, , namely

(6.4)

flc 0.

- (©5)

It is of interest to andyze the v’ dosurein the weskly compressible perturbative
andyss. There we find that the incompressible pressures, the ratios of the
compressible sound speeds, the second order contribution to the phase volume

expandon ratio |V, /V,.|, and the second order perturbation termin the expangon
of ¢, arelinked by anewly derived equation (Jin (2001), Glimm & Jn (2001)).
This eguation removes an indeterminancy in the incompressible equations,
previoudy not understood, and shows thet the two phase incompressible
equations, in contragt to the single phase case, remember the compressible fluids
from which they are derived. Wefirg reformulate (6.5) as
Zkfa[vm + 1 Dyl o Edz

_z® fz r. Dt ﬂ

A, 1050y,

. éfz r, Dt a
The formula (6.6) can now be expanded perturbetively in powers of the Mach
number, and the second order term in this expangion indudes the incompressible
pressure. The resulting equation is the desired new equation for the
incompressible pressure. See Jin (2001) and Glimm & Jin (2001).

\"

(66)

On the basis of the above andlyss, we are adle to link the phenomenologica drag
coefficients in the buoyancy drag equation for the edge motion with fundamentd
laws of physcs. Newton' slaw of accderation, applied at the edge of the mixing
zoneis equivaent to the momentum equation, evaluated & this location. The
equations can be highly smplified in this evaduation (GJimm e d. (1999)) and
resemble buoyancy drag equations (5.1). In fact, they are different, due to the
absence of phenomenologica quantities. Thus the added mass and the drag are
replaced by exact quantities, which, however, are not convenient to evauate.
Specificaly they relate to the pressure difference between the phases and the



gradient of the pressure difference. A closed form solution for the pressure
equation in the incompressible limit, to be published, reveds terms which can be
reedily identified asinertid terms (added mass), fundamentally exact drag terms
(depending on velocity differences) and pressure difference terms (interpreted as
phenomenologica corrections to the drag terms). Thus we see that the buoyancy
drag equations can be obtained via a closure relation which expresses the added
mass and drag as pressure difference terms in the exact momentum equation and
relates these to quantities known in the buoyancy drag equation, namely lengths,
velocities and accelerations.

7 Effective dffuson and Reynolds stress

Reduced multiphase mixture modes have fewer equations and fewer variables,
They arelogicdly derived from more complete models. Here we derive asingle
velodty, Sngle temperature modd from the chunk mix modd of Sect. 6,
following Cheng et d. (2002b). For modds with a single velodity, this velocity
will express mean fluid flow, and cannot drive the mixture process, which isthen
modeled as adiffuson process. The point isto determine the (time and spatialy
dependent) intergpecies diffusivity, which governs the mixing rates diffusvity.
Asauming thisto be afunction of the volume fraction b, , Alon & Shvarts (1996)
propose diffusion proportiond to b, (1- b, ) =b,b, . Wefind corrections to this
form which reflect the deviaion of the volume fraction from being alinear
function of z

The key to the computation of the diffusvity is adetermination of entrainment
time. For agiven parcd of fluid K a a given pace time location within the
mixing zone, the entrainment time is defined to be (the earlier) time a which that
parce entered the mixing zone. Given the velocity higtory of the two phases,
avalablein dosed form (in terms of the edge positions Z, ), one integrates

backward in time until the moving edge Z,.(S) isencountered. Thismoation is
then interpreted as a diffuson process, and the exact value of diffuson which
duplicates this motion is determined. For RT mixing, the diffugivity can be
determined in dosed form, while for RM mixing, the diffusivity is solved viaan
aoproximate closed form expression, and dso by integration of an ordinary
differentid equation. For the generd case, the solution is given up to a quadrature.
For the RT case the closed form expresson for the diffusivity D is

éb? ’a, U
D - 2Azgzt3blbzaiag ,\bli'l + bzi'z ,
eda a’ g

where

a =ajb, +a,b,.
Note that the formulais not symmetric between b, and b, Sncea, ! a, for
A>0. Thefactor in the square brackets is the correction to the formula of Alon

& Shvartz (1996). Thisfactor reflectsthe lack of symmetry between the two
phases and is especidly sgnificant for Richtmyer-Meshkov mixing. See Hg. 5.



The dominant component R,, of the Reynolds stress tensor is dso determined in
Cheng et d. (2002b).

[Figure 5 goes here]

8 Condusons

Theory has been shown to be remarkably successful for the study of turbulent mix.
Zero parameter modes of the compressible mixing zone have been derived from

totally theoreticd condderations, and match experiment quantitatively. Both

mixing zone edges and the mixing zore interior flow variables have been modeled.
The latter are described by anew set of averaged equations, with severd pleasant
properties, induding sability a ahyperbaolic leve of time propagation, and multi

gpecies thermodynamics. Smpler modds, such as turbulent diffusve mixing have

been derived from these equations. Detalls of the weekly compressible limit for

our averaged equations have been solved in dlosed form.
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TABLES
Teble 1. Bubble height to width ratios in experiments and modes.

Cheng et d. (20028): Modd 3

Oron et d. (2001): Modd 1tol5
Smeaton and Y oungs (1987): Experiment 33
Dimonte and Schneider (1996): Expariment 2—4



FIGURE CAPTIONS

Figure 1. Theratio a , /a, isdetermined by aCOM assumption and

compared to the experimentd data of Dimonte et d. (2000) and to a power law fit.
The power law isunphyscd for A =1, and thusthisfit falls to reproduce the

experimentd datafor large A. Our vaduesfor a ¢ /a,, agreewith the experimenta
datafor dl vauesof A.

Fgure 2. The exponent g, for RM mixing. The solid and dotted lines are
the predictions of Cheng et d. (2000) for a, = 0.05 and for a,, = 0.06
respectively. The solid dots are LEM experiments of Dimonte & Schneider (1996).

Figure 3. Dependence of the exact solution of (4.1) on variaion of the
initid data Z,,. The bet fitting vaue for the data of Smeeton and Y oungs (1987)
is Z,, = 0.75 for their experiment number 101.

Fgure 4. Volume fraction of the light fluid, showing the incompressible
solution, a perturbation term, and the compressible solution computed
perturbatively through first order.

Figure 5. The diffusion coefficient D across the mixing layer in RT mixing.
The dash-dotted lineisfor A=0.5, a, =0.07 andthesdlid lineisfor A=0.96 ,
a,=0.18.
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